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ABSTRACT

This paper aims to predict the number of deathBlahsoura University Children's Hospital by usingFBIMA
models. It is necessary to use death data to daterthe health requirement for hospital and measuealical efficiency
within the hospital. We take the death data in fitasfrom Jan. 2011 to Dec 2017. We concluded thatmodel SARIMA
(1,1,1) (0,1,1) is the best model which gives eddkvest value for each of RMSE and BIC, approatgdbwest value for
MAE and the largest value for R2.
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INTRODUCTION

The records that are gathered over time refer neeTseries analysis, because of the importanceedirtte order
of data. One differentiating characteristic is ttfa¢ applications of time series applications arery various and the
records are dependent in time series. In additdata may be gathered hourly, daily, weekly, andtigrand yearly, this
depends on various applications. Moreover, notatembe used to symbolize "T" for a time seriggmgth and the unit
of the time scale implied in these notations suglpd} or {Yt} (t =1,---,T). We start to introduca number of real data

that are used to indicate the modeling and forewasf time series.

The term of seasonally refers to a regular modelhainges which repeat for S time period, in whiatefgrs to
the numbers of timer periods till the pattern répesgain. Surly, seasonality causes the time stribg no stationary, a

difference between a value and a value with lagitarefers to a multiple of S is called seasonatidguishing.

The term of time series defined as data seriesitiol@xed (listed or graphed) in time order. Gengral time
series refers to the word " sequence" that isntakt equally, successive, and spaced points ia. fiherefore, it is the
sequence of separated time data. In additionrtee series are frequently plotted through line thahlso, time series
applied in signal processing, statistics, the fastiog of weather, econometrics, the finance ofhevattics, transport,
earthquake prediction, the forecasting of trajggt@stronomy electroencephalography, communicatiansl control

engineering, and broadly in any field of applie@ésce and engineering that includes temporal measemts.
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10 Hanaa Elgohari, Mohammed Abdulmajeed & Ahmed Elrefaey

On the other hand, time series analysis can anaiyze series data by involving some methods thaitel
significant statistics and features of the data Tdrecasting of Time series defined as using tlelehto make the
prediction of future values that focused on eadjues, "time series analysis" does not refer o type of time series
analysis. It compares the values of a single ottipleltime series at various points in time. Alte data of time series
have a temporal ordering in which natural orderifighe observations are not in it. Time series ysiglis extracted

from the analysis where the observations are ikkatgeographical areas.

The stochastic model shows that observations arge dogether in time. In addition, to, time senmwsdels
employed the natural one-way of time ordering, beeathe values will be illustrated over a spegiciod as it elicits

some way from past values, rather than future galue

In addition to, the techniques of time series asialycan be classified as "parametric” and "non-
parametric" approaches. In detail, the paramapjmroaches suppose the basic stationary stoclpastiess has a specific

structure that could be characterized as usingvanfembers of parameters.

On the other hand, time series analysis approashesethods may be classified into" linear" amaoin-linear",

and "univariate" and "multivariate".

Theoretical Aspect

Autoregressive Integrated Moving Average (ARIMA)

{Yy ; t € Z} process is amutoregressive moving average (ARM#bpcess of ordefp, q), denoted withY;~
ARMA(p, q)if:

Yo =¢o+ d1Yeq + o+ PpYep +up — 01U g — - — OgUpyg... 1)

Where u~ WN (0, &), and ¢, ¢1, v $p,01,0,,...,60, are (p+g+l) constants and the
polynomials¢(z) = 1 — ¢z —...— ¢p,zPand

0(z) = 1 + 0,z+...+ 6,z7Have no common factors.

ARIMA models are used in the data that indicater-siationary evidence, which is first distinguighistep

(identical to integrate part of the model) that ba@nused more times to ignore non-stationary.

The part of "AR' 'in ARIMA shows the regressiohimterests' developing variable on its lagged saslprior
values. The part of "MA" shows a linear colleotaf error terms and its values happened at diffetimes in the past as
the regression error. The part of "integrated" nhatiews the values that are exchanged with théndigin between the
prior values and their values (this process maytmen implemented more than once). Moreover,ith@beach feature

has specific aim that is making the model be bigtéor the data.

Non-seasonal models are symbolized ARIMA (p, d,im)which parameters "p, d, and " are non-negativ
integers. "P" refers to the number of time laghe autoregressive model, "d" refers to the@egf variation such as the

number of times in which the data have past vadubsracted, and" q" refers to the order of theving-average model".
Seasonal ARIMA Model

Both "non-seasonal" and "seasonal" factors multiplicative model are integrated by the seabdxRIMA
model. For the model, one shorthand notation iREBM (p, d, q) x (P, D,Q)S
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p" refers to non-seasonal AR order "d" refenson-seasonal differencing

"q" refers to non-seasonal MA order "P " referseasonal AR order

"D" refers to differencing” Q" refers to sezsdVIA order

S =time span of repeating seasonal pattern.

This model may be stated without differencing opers as:

O(B¥)P(B) (X, — p) = O(B)0(B)u... 2)
The non-seasonal components are:

AR:¢(B) =1 - ¢;B — ...— @,BP... (3)
MA:6(B) = 1 + 0,B + ...+ 0,B¢ @)
The seasonal components are:

Seasonal AR: ®(B%) = 1 — ®;BS — ...— ®pBFs )
Seasonal MA: ©(B®) = 1 + ©;B° + ...+ Qg (6)
Where B is operating on Yt, has the effect of giifthe data back one period.

BY; = Y;_; ... (7)
Two applications of B to Yt shifts the data baclotperiods:

B(BY,) = B2Y, = Y,_, ... (8)
and so on

By the sample autocorrelation coefficients thattheeseries of quantities, significance guide ®pkrsistence in

a time series are used to measure the correlatiatiffarent times between observations. A groupaafocorrelation

coefficients sorted as a separation function iretthrat is the sample of autocorrelation functidd), (or the ACF.

Ck _ I (YY) (Year=Y)
Iy =2+= o - 9
A T, (Ye-1)? ©)

WhereC, = %Z%“:‘lk(Yt VNV —Y); k=01.2,.., K< g is the auto covariance?
The symbol ofY refers to the mean of the time series and N réfetise number of the observations.

The partial autocorrelation coefficierfigare calculated as follows:

~ _ .~ _ 1% t
(p1_r1'(p2_1_r§' ...... etc.

1192 Fg—2T1
ri 1rq ..rg_3rp
rarqi 1..rg—4r3
~ _ ITk—1Tk—2Tk-3 --.T1Tk

Ox = Trirz T oty | (10)
rp1rg Ig—3Tk—2
rary 1 ..Tg_4Tk—3

Ik—1Tk-2Tk-3 ~-T11
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The coIIection{@k} is called the sample partial autocorrelation fiorc{SPACF).
Stationary
If it has first and second moment time-invariahisycalled stationary.
« E(yt)=pyforallte T
o E[(yt —py) (yt=h —py)]=yh for all te T and all integers h such that t efi.

In the equation, one, a stationary stochastic m®sbould fluctuate around a constant mean andrixtdsave

direction because all members of a stationary sistéhprocess have the same constant mean.
Fitting Model

It is very important that the selection of the rmbdJnder-fitting a model" probably not exprelss true nature of
the variability in the outcome variable. On theeatihand, an "over-fitting model" loses generalitijaike Information
Criteria (AIC) is a way of choosing the model whizhlances the drawbacks. When a best model is chtisetraditional
method of null-hypothesis testing can be used erb#st model to determine the correlation betwesticolar variables

and the interest outcome:
AIC = 2K — 2log (L(8/y))... (11)

The denotatiotog (L(/y)) refers to the log at the maximum point in the niaeiimated but "K" refers to the

number of estimable parameters such as degreesearfdm. Further refined this estimate for correcfior small data
samples:

_ 2K(K+1)
AlCc = AIC+ 2022 (12)

n refers to the sample size and K and AIC arenddfiabove. The correction is negligible and AlGusficient
if n is large with respect to K,. AIC c is more geal, however, and is generally used in place &.AThe best model is
with the lowest of "AIC ¢ "(or AIC) score. It &sential to concentrate on the AIC and AIC ¢ sctivat are ordinal.

Moreover, Bayesian Information Criteria (BIC) is estimate of the posterior probability functionaofnodel as

being true, under specific Bayesian setup, soahaiver BIC is a model to be the true model:
BIC = 2logn — 2log (L(6'/y))... (13)

The Box-Ljung test is considered as a diagnosiit tioat is used to test the lack of fit of a timeries model.
In addition, It is used to apply the residuals ¢if@e series after fitting an ARMA (p, q) modeltte data.

The test investigates autocorrelations of the ved&d If the autocorrelations are so small, we dedthat the

model does not exhibit lack of fit.
Forecasting values, (where n is the number of fstedl errors):

ef

|"‘N

Mean Square ErravSE = pa— (14),ei =y — ¥, -
Root Mean Square Err&MSE = vMSE (15)
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Mean Absolute Percentage EIMAPE = %Z% *100% (16)

Mean Absolute DeviatioMAD = Z'i—il a7
Practical Aspect

We take the dataf deaths in hospit for the period from Jan. 2011 irDec. 2017 (the table below),
forecasting the daily rate of deaths periods fer fiiture months, using the seasonal time serieeh{8ARIMA)for the
period from Jan. 2011 to Dec. 2017 Figure (1) for the original data belowg notice the increing and decreasing in
the following of every allmonth's (201-2017), a spatially increasing in the end men{Berin Dec.) of the years
2011- 2017 and decreasing after 2642011 in the first months .

L A L B
791M135791M135791M135791113579111357891

MONTH, period 12

Figure 1: Seasonal Time Serieof Deaths at Months in Hospital(2011-2017)

And you have testetthe stationary othe series to know the stationary and Equalit mean, but the variance not
stationary by t-test with Levenes Test table(1) and table(2) :

Table 1: Independent Samples Test

Levene's Test for Equality of Varianceq T-Test for Equality of Means
F Sig. T DF
Visitors Equal var?ances assumed .916 341 -6.625 82
Equal variances not assun -6.625 80.060
Table 2 Independent Samples Test for Equality of Mear
T-Test for Equality of Means
Sig. : Std. Error 95% Confidgnce Interval of
2 Mean Difference . the Difference
(2-Tailed) Difference
Lower Upper
Visitors Equal var?ances assumed .000 -2031.90476 306.68507 | -2641.9990 | -1421.81046
Equal variances not assun .000 -2031.90476 306.68507 | -2642.2204 | -1421.58905

After the Analyses theSeasonal Factor:of Months in Table (3):

Table 3 SeasonaFactors % in Each Months from Years (20112017

Month Jan. | Feb. | Mar. | Apr. | May | June | July Aug. Sep. Oct. Nov. | Dec.

Seasonal 15.4| 30.8 46.2| 61.5| 76.9 92.3| 107.7 123.1 183/5153.8 | 169.2| 184.6
factor %
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From the above table, ware noticing the seasonal fluctuatiomgreasing month, which are very high during

the end four months of the year, desigg in the following firs months, and so on.

Residual ACF Residual PACF

DD[IDDI:IDHU 0 Huﬂ== [

[I”“EI

=
3
h=d
]
@
14

L 19PO - syiesp

T T T T T T T I T T T T T T T 1T T 1
131517 189 21 23 1 3 5 7 9 1113151719 21 23

Lag

Figure 2: Autocorrelation Function (ACF) & Partial Autocorrelation Function (PACF) in Original Data

We suggesthat we should use a seasonal differ after using transformationatural logarithr of the data of
deaths in the seriel,is also apparent from Figure (after nonstationary variable is differen, it becomes stationary. by
first-differencing, it not necessatp shov that the number of times a variable requebe distinguished to deduce
stationary that degnds on the number of unit natural Lto become equals for\ariation of errors and used differer

one(d=D=1) in models.

In the analysis that follows, we will try to imprewhese models through the addition of seasonallldAF

terms:

Table 4: Statistics of Seasonal SARIMA Models

No. | SARIMA model | R2 | RMSE | MAE | MAPE | BIC
1 | (0,1,000,1,1)1 | 0.320 | 11.822] 9.114 22.418 5.1
2 | (0,1,0)(1,1,0)1 | 0.256 | 12.487 9.895 24.150 5.22¢
3 | (0,1,0)(1,1,1)1 | 0.329| 11.699 0.06] 22.316 5.15¢
4 | (0,1,1)(0,1,001 | 0.323| 11.088 8.844 22.04p 4.99.
5 | (0,1,1)0,1,1)1 | 0.473| 9.610| 7.654 19.02% 4.70¢
6 | (0,1,1)(1,1,001 | 0.472| 9.608| 7.646 18.989 4.76¢
7 | (0,1,1)(1,1,1)1 | 0.485| 9598 7.513 18.682 4.82:
8 | (1,1,0)(0,1,1)1 | 0.396 | 11.126 8.544 21.128 5.05¢
9 | (1,1,0)(1,1,001 | 0.341| 11.652 9.09§ 22.418 5.15]
10 | (1,1,00(1,1,1)1 | 0.410 | 10.985 8.43§ 20.87f 5.09:
11 | (1,1,1)(0,1,001 | 0.353 | 11.051] 8.754 21.894 5.04¢
12 | (1,1,1)(0,1,1)1 | 0.508 | 9.603| 7.499 18.68] 4.82«
13 | (1,1,1)(1,1,001 | 0501 | 9.526| 7.614 18.920 4.80¢

From thetable above, we conclude that the model (SAR (1,1,1)(0,1,1)) is the best, which gives us the lov
values for each of RMSE, and Blénd approximately lowest value for MAE ¢ thelargest value for R2. So, we will re
on this model to estimate theeglictions of the next months of the years 2018201P The test of the parameters of 1

model is:
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Table 5 Test of theParameters ofPredictions Electricity Interruption for
Years 2017-2018 by the Model SARIMA (1,1,1) (0,1,1)

Parameters Estimate S.E. t Sig.
Constant -0.029 0.029 1.006 0.31¢
AR —Lag 1 0.355 0.150 | 2.372 0.021
Difference 1
MA — Lag 1 1.000 34.309| 0.029 0.971
Seasonal Differen: 1
MA, Seasonal Lag 0.629 0.164 3.840 0.00(
Natural Log Lag 0.017 0.017 0.951 0.34¢

The autocorrelation functions (AC and partial autocorrelation functio(BACF) canpresent useful information

on particular properties of than staticy in the residual for the model of the figure (3):

Residual ACF Residual PACF

———

Residual

D_HDUDHHHDDDUHD_DUD-DD_

—0.o
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D_DDDDHDHDDD- UDUDUH

_

0T T T T T T T T T T
135 7 9111315171921 23

Figure 3: Residual of (ACF) & (PACF) for SARIMA (1,1,1) (0,11)12

Therefore, the forecasting values of the daily agerof deaths per month in hosy during the years 2018 and
2019, using the above model SARIMA1,1) (0,1,1)12, will be as follows:

Table 6: Forecasting ofDeaths Per Month of SARIMA (1,1,1) (0,1,1)15ince2018-2019

Year Months | Forecast | LCL UCL
Jan. 54 35 81
Feb. 36 22 55
Mar. 42 26 64
Apr. 34 21 52
May 41 25 63
Jun. 43 27 66
2018 Jul. 47 29 72
Aug. 46 28 71
Sep. 39 24 60
Oct. 47 69 72
Nov. 45 28 69
Dec. 54 34 84
2019 | Jan. 52 31 82
Feb. 34 20 54
Mar. 39 23 62
Apr. 32 19 50
May 38 23 61
June 40 24 64
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July 44 26 69
Aug. 43 25 69
Sep. 37 22 59
Oct. 44 26 71
Nov. 43 25 69
Dec. 53 31 85
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Figure 4: Fitting Model for Predictions of Deaths of SARIMA (1,1,1Y0,1.1) 12

Therefore, in table (@ppears thethe forecasting values will increasing for depén montl during the year 2018
and 2019 spatial in months Jamd Dec, and by using the model SARIMA (1,1,1)(0, 1.2, the large forecast of deaths

will be (54) in Jan. and Dec. in yea018as it's shown in table (6) and Figure (4) fittithg mode by original data and
forecasting for years 2018,2019

CONCLUSIONS AND NOTES

This studyaims to predict the number of des atMansoura University Children's Hospital by usingFBKMA
models and we are finding th&ARIMA is the best model for forecasting from thiémer models by using the moc
SARIMA (1,1,1) (0,1.1)12 in this research. Al: the model SARIMA (1,1,1) (0,1.1)12nd SARIMA (1,1,1 (1,1.0)12
shown best resulffsom the other mode.1In general forecasting of deaths will increfsrethe next months in years 20

and 2019. So, It should attention and study foithesctor to kno» why increasing of deattin the last years.
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